
Accelerating Search-Based Planning for Multi-Robot Manipulation by
Leveraging Online-Generated Experiences

Bhaswanth Ayapilla
Carnegie Mellon University
bayapill@andrew.cmu.edu

Anirudh Srihari
Carnegie Mellon University
ashriha2@andrew.cmu.edu

Kailash Jagadeesh
Carnegie Mellon University
kailashj@andrew.cmu.edu

Oliver Berton
Carnegie Mellon University
oberton@andrew.cmu.edu

Nikhil Sobanbabu
Carnegie Mellon University
nsobanba@andrew.cmu.edu

Abstract

Coordinating multiple robot arms in shared workspaces
is computationally challenging, as traditional planning al-
gorithms must solve each query from scratch, leading to
prohibitive computation times as the number of arms in-
creases. When robots operate in structured environments
performing repetitive tasks, many planning problems share
similar characteristics—yet conventional approaches fail
to exploit this similarity. Experience-based planning of-
fers a promising solution by reusing path segments from
previously solved problems to accelerate new searches.
This work implements and evaluates xECBS, the core al-
gorithm from the XePlanner framework, which leverages
an online-generated experience database to guide conflict-
based search for multi-arm coordination. We implement
xECBS in MuJoCo and conduct comprehensive compar-
isons against three established baselines: Conflict-Based
Search (CBS), Enhanced Conflict-Based Search (ECBS),
and RRT-Connect. Through experiments with 2-8 7DoF
Franka robot arms across diverse start-goal configurations,
we demonstrate that xECBS achieves significant speedups
over baseline methods while maintaining solution qual-
ity within 10-15% of optimal. Our results show that
experience-based planning scales more favorably than tra-
ditional approaches, particularly as problem complexity in-
creases, making it well-suited for time-constrained multi-
arm coordination in realistic applications.

1. Introduction

The coordination of multiple robot arms in shared
workspaces is a fundamental challenge in robotics, with ap-
plications ranging from collaborative assembly and ware-
house automation to surgical robotics. As the density of

robotic systems increases in modern manufacturing and lo-
gistics environments, the ability to efficiently plan collision-
free paths for multiple arms becomes critical. However,
the computational complexity of multi-arm path planning
grows rapidly with the number of robots, posing significant
challenges for real-time operation.

Classical approaches to multi-robot path planning can be
broadly categorized into coupled and decoupled methods.
Coupled methods, such as centralized sampling-based plan-
ners [3], plan in the composite configuration space of all
robots, ensuring coordination but suffering from the curse
of dimensionality. Decoupled methods plan for each robot
independently and resolve conflicts through prioritization
or replanning, trading completeness for computational ef-
ficiency. Conflict-Based Search (CBS) [5] and its variants
bridge this gap by maintaining individual planning while
systematically resolving conflicts through constraint-based
replanning. Enhanced Conflict-Based Search (ECBS) [1]
further improves scalability by introducing bounded subop-
timality, allowing faster conflict resolution at the cost of so-
lution optimality.

Despite their successes, these methods share a funda-
mental limitation: they solve each planning query indepen-
dently from scratch. In many real-world robotic applica-
tions, planning problems exhibit significant structural sim-
ilarity. Warehouse robots repeatedly navigate similar re-
gions, assembly arms follow recurring motion patterns, and
collaborative systems execute variations of the same coor-
dinated behaviors. Traditional planners discard all compu-
tational effort once a solution is found, failing to exploit this
inherent repetition.

Experience-based planning addresses this limitation by
building and reusing a database of previously computed so-
lutions. The key insight is that when solving similar prob-
lems, relevant portions of past solutions can guide new
searches, dramatically reducing exploration of the search



space. This approach has shown promise in single-robot
motion planning [2] and has recently been extended to
multi-robot systems through the XePlanner framework [4].

XePlanner introduces xECBS (experience-accelerated
Enhanced Conflict-Based Search), which integrates experi-
ence reuse into the conflict-based search paradigm. The al-
gorithm maintains an experience database of path segments
from previously solved queries. During low-level search for
individual robots, xECBS queries this database and pushes
relevant experience states directly onto the search OPEN
list, providing a ”warm start” that can significantly reduce
the number of states explored. Critically, xECBS preserves
the theoretical guarantees of ECBS, maintaining complete-
ness and bounded suboptimality while leveraging experi-
ences for acceleration.

While the original XePlanner work demonstrates effec-
tiveness for multi-robot manipulation with object transfer,
the fundamental question of how experience-based planning
performs for multi-arm coordination in path planning sce-
narios remains underexplored. In this work, we implement
xECBS for multi-arm path planning in MuJoCo and pro-
vide a systematic empirical evaluation comparing it against
established baselines: CBS, ECBS, and RRT-Connect.

We make the following contributions:
• An implementation of xECBS for multi-arm path plan-

ning in MuJoCo, demonstrating practical considerations
for experience-based planning in physics simulation

• A comprehensive empirical comparison of xECBS
against CBS, ECBS, and RRT-Connect across diverse
start-goal configurations for four Franka Arms

• Identification of scenarios where experience-based plan-
ning provides the greatest benefit, along with practical in-
sights for deployment
Our results show that xECBS achieves significant

speedups over baseline methods after accumulating suffi-
cient experiences, while maintaining solution quality within
10-15% of optimal. The benefits are most pronounced with
4+ arms, where traditional methods struggle with scalabil-
ity. These findings suggest that experience-based planning
is particularly well-suited for applications where robots per-
form repetitive coordination tasks in structured environ-
ments.

2. Technical Approach

This section provides detailed descriptions of the algorithms
used in our comparative study. We begin by establishing
the problem formulation and representations used across
all planners (Section 2.1), then present Enhanced Conflict-
Based Search (ECBS) as the foundation (Section 2.2), fol-
lowed by experience-accelerated ECBS (xECBS) which
builds upon it (Section 2.3), and conclude with descriptions
of the other baseline planners (Section 2.4).

2.1. Problem Formulation

2.1.1 Multi-Arm Path Planning Problem

We consider the problem of planning collision-free paths
for n robot arms in a shared workspace. Each arm must
move from a start configuration to a goal configuration
while avoiding collisions with obstacles, other arms, and
self-collisions.

Formally, let A = {a1, a2, . . . , an} denote the set of n
robot arms. For each arm ai, we define:
• Configuration space: Qi ⊆ Rd where d is the number of

degrees of freedom
• Free space: Qi

free ⊂ Qi (collision-free configurations)
• Obstacle space: Qi

obs = Qi \ Qi
free

• Start configuration: qistart ∈ Qi
free

• Goal configuration: qigoal ∈ Qi
free

A configuration qi ∈ Qi
obs if it results in collision with

static obstacles or self-collision within the arm.

2.1.2 State Space Representation

The state of the multi-arm system at discrete time t is rep-
resented as:

st = (qt1, q
t
2, . . . , q

t
n) (1)

where qti ∈ Qi is the joint configuration of arm i at time t.
For our implementation with 7 DOF arms, the composite

state space has dimension n × d, growing linearly with the
number of arms. Each component qti is a vector of joint
angles: qti = [θi1, θ

i
2, . . . , θ

i
d]

T .

2.1.3 Action Space and Motion Primitives

At each timestep, an arm can either:
• Move: Transition to an adjacent configuration q′ ∈

Succ(q)
• Wait: Remain at the current configuration

The successor function Succ(q) returns configurations
reachable in one timestep through motion primitives.

Motion Primitives: For planning on implicit graphs in
continuous configuration spaces, we discretize the space
using motion primitives—predefined motions that connect
configurations. Each primitive represents a small, feasible
motion in joint space.

For a d-DOF arm with configuration q =
[θ1, θ2, . . . , θd]

T , we define motion primitives that in-
crement or decrement individual joints:

M = {m+
1 ,m

−
1 ,m

+
2 ,m

−
2 , . . . ,m

+
d ,m

−
d } (2)

where m+
j increases joint j by ∆θ and m−

j decreases it
by ∆θ. Applying primitive m+

j to configuration q yields:

q′ = q +∆θ · ej (3)



where ej is the j-th unit vector.
Successor Generation: The successor function applies

all valid primitives:

Succ(q) = {q′ | q′ = Apply(m, q),m ∈ M, q′ ∈ Qi
free}

(4)
Each successor q′ must satisfy:

1. Joint Limits: θmin
j ≤ θ′j ≤ θmax

j for all joints j
2. Collision-Free: q′ ∈ Qi

free (no self-collision or obstacle
collision)

3. Constraint Satisfaction: q′ does not violate any im-
posed constraints
Wait Action: The wait action keeps the arm stationary:

q′ = q. This is essential for temporal coordination—one
arm may need to wait while another passes through a shared
region. The wait action has zero cost: c(q, q) = 0.

2.1.4 Constraints and Conflicts

A vertex constraint ⟨ai, q, t⟩ prohibits arm ai from oc-
cupying configuration q at time t. An edge constraint
⟨ai, q, q′, t⟩ prohibits arm ai from transitioning from q to q′

between times t and t + 1. A vertex conflict occurs when
two arms occupy configurations that result in collision at
the same time: (ai, qi, t) and (aj , qj , t) conflict if the arms
collide when in configurations qi and qj simultaneously. An
edge conflict occurs when two arms traverse paths that in-
tersect during motion: (ai, qi, q

′
i, t) and (aj , qj , q

′
j , t) con-

flict if the arms collide during their respective motions.

2.1.5 Cost Function

The cost of a path π = ⟨q0, q1, . . . , qT ⟩ is defined as the
sum of edge costs:

cost(π) =
T−1∑
t=0

c(qt, qt+1) (5)

where c(qt, qt+1) is the cost of transitioning from qt to
qt+1. In our implementation, we use Euclidean distance in
joint space:

c(qt, qt+1) = ∥qt+1 − qt∥2 =

√√√√ d∑
j=1

(θt+1
j − θtj)

2 (6)

For a multi-arm solution where arm i follows path πi,
the total solution cost is:

costtotal =

n∑
i=1

cost(πi) (7)

2.2. Enhanced Conflict-Based Search (ECBS)

ECBS [1] extends CBS by introducing bounded subopti-
mality, trading solution quality for computational efficiency.
Understanding ECBS is essential as it forms the foundation
for xECBS.

2.2.1 Two-Level Framework

ECBS operates through two levels of search:
High-Level Search: Maintains a Constraint Tree (CT)

where each node N contains:
• A set of constraints for each arm: N.constraints =
{constraints1, . . . , constraintsn}

• A solution (set of paths): N.solution = {π1, . . . , πn}
• The total cost: N.cost =

∑n
i=1 cost(πi)

Low-Level Search: For each arm ai, computes a path
from qistart to qigoal that satisfies all constraints in constraintsi.

2.2.2 High-Level Search with Focal Search

ECBS uses focal search at the high level to balance solu-
tion cost and conflict resolution efficiency. It maintains two
priority queues:

OPEN List: Ordered by f(N) = N.cost
FOCAL List: Subset of OPEN containing nodes with

f(N) ≤ wH · fmin, where fmin is the minimum cost in
OPEN and wH ≥ 1 is the high-level suboptimality bound.

Within FOCAL, nodes are ordered by a secondary
heuristic that prioritizes efficient conflict resolution (e.g.,
number of conflicts). This allows ECBS to sometimes
choose higher-cost nodes that are easier to resolve.

2.2.3 Algorithm Flow

1. Initialization: Create root node N0 with no constraints.
Compute initial paths for all arms using low-level search.
If no conflicts exist, return solution.

2. Node Selection: Select node N from FOCAL with the
fewest conflicts (or other secondary heuristic).

3. Conflict Detection: Identify the first conflict in
N.solution. If no conflicts exist, return N.solution.

4. Conflict Resolution: For a conflict between arms ai and
aj :
• Create two child nodes Ni and Nj

• Add constraint to Ni preventing ai from causing the
conflict

• Add constraint to Nj preventing aj from causing the
conflict

• Replan for the constrained arm in each child using
low-level search

5. Child Insertion: Add valid children to OPEN and up-
date FOCAL.



6. Repeat: Continue from step 2 until solution found or
timeout.

2.2.4 Low-Level Search: Weighted A*

For each arm, ECBS uses Weighted A* (WA*) with subop-
timality bound wL ≥ 1. Given constraints C, WA* com-
putes a path by:
1. Maintain priority queue ordered by f(s) = g(s) + wL ·

h(s)
2. g(s): actual cost from start to state s
3. h(s): heuristic estimate from s to goal (typically Eu-

clidean distance)
4. Expand states in order of f(s), skipping states that vio-

late constraints in C

2.2.5 Suboptimality Bound

ECBS provides bounded suboptimality: the returned solu-
tion has cost at most wH · wL times the optimal cost. In
practice, wH = 1 is often used, giving overall bound wL.

For our experiments, we use wH = 1 and wL = 1.5,
providing solutions within 1.5× optimal.

2.3. Experience-Accelerated ECBS (xECBS)

xECBS [4] extends ECBS by leveraging an experience
database to accelerate low-level search. The key innova-
tion is replacing standard WA* with xWA* (experience-
accelerated Weighted A*).

2.3.1 Experience Database

The experience database stores previously computed paths.
After solving a planning query, the paths for all arms are
added to the database.

Formally, the experience database E is a collection of
path sequences:

E = {πe
1, π

e
2, . . . , π

e
k} (8)

where each πe
j = ⟨q0, q1, . . . , qT ⟩ is a complete path

from a previous planning episode.

2.3.2 Experience-Accelerated Weighted A* (xWA*)

xWA* extends WA* by leveraging experiences to guide
search. The key modifications are:

Input: In addition to start, goal, and constraints, xWA*
receives:
• Previous path πprev from parent CT node (if available)
• Access to experience database E

Warm Start: If the start state qstart appears in πprev,
xWA* pushes consecutive states from πprev onto OPEN:
1. Find index k where πprev[k] = qstart

2. For each subsequent state q = πprev[k + 1], πprev[k +
2], . . .:
• Validate transition (qprev, q) is collision-free
• Check q does not violate constraints
• Compute g(q) by propagating cost
• Insert q into OPEN with priority f(q) = g(q) + wL ·
h(q)

• Stop when validation fails or goal reached
Experience-Guided Expansion: During search, when

expanding a state s that belongs to an experience path πe ∈
E :
1. Find index k where πe[k] = s
2. For subsequent states q = πe[k + 1], πe[k + 2], . . .:

• Validate transition and constraints (as in warm start)
• Insert valid states into OPEN
• Stop at first invalid state or goal
Efficient Collision Checking: xWA* maintains a cache

of validated transitions. Before performing expensive colli-
sion checking for transition (s, s′), it queries the cache. If
the transition was validated in a previous search, collision
checking is skipped.

2.3.3 xECBS Algorithm Flow

The high-level algorithm remains identical to ECBS, with
the critical difference being the low-level planner:
1. Initialization: Create root node with no constraints. Use

xWA* (with empty previous paths) to compute initial
paths.

2. Node Selection: Select node N from FOCAL.
3. Conflict Detection: Find first conflict in N.solution.
4. Conflict Resolution: For conflict between ai and aj :

• Create children Ni and Nj with additional constraints
• In Ni, use xWA* to replan for ai with:

– Previous path: N.solution[πi]
– Updated constraints: N.constraintsi ∪
{new constraint}

– Access to experience database E
• Similarly for Nj and arm aj

5. Solution Update: When a valid solution is found, add
all paths to experience database E .

2.3.4 Computational Benefit

The speedup from xWA* comes from:
1. Reduced State Expansions: By pushing experience

states directly onto OPEN, xWA* can ”jump” through
regions of the state space, avoiding expansion of inter-
mediate states.

2. Better Heuristic Guidance: Experience paths implic-
itly encode good directions toward the goal, biasing
search toward productive regions.

3. Cached Collision Checking: Reusing validated tran-
sitions avoids redundant expensive geometric computa-
tions.



Figure 1. Evaluation scenes used for comparison of the multi-agent planners

2.4. Baseline Algorithms

We compare xECBS and ECBS against two additional base-
lines representing different algorithmic paradigms.

2.4.1 Conflict-Based Search (CBS)

CBS [5] is the optimal variant of the conflict-based search
family. It is identical to ECBS with wH = wL = 1, provid-
ing optimal solutions at the cost of longer computation time.
CBS uses standard A* for low-level search (unweighted,
wL = 1) and does not use focal search at the high level
(effectively wH = 1). The constraint tree is explored in
strict order of solution cost, branching only on the lowest-
cost node.

Advantages:
• Provides optimal solutions (minimal total path cost)
• Systematic conflict resolution

Limitations:
• Exponential growth in CT size with number of conflicts
• Poor scalability to many arms or complex environments

2.4.2 RRT-Connect

RRT-Connect [3] is a sampling-based bidirectional planner.
We implement a centralized variant that plans in the com-
posite configuration space of all arms.

Algorithm:
1. Initialize two trees: Tstart from qstart = (q1start, . . . , q

n
start)

and Tgoal from qgoal = (q1goal, . . . , q
n
goal)

2. Extend: Sample random composite configuration qrand
in Q1 × · · · × Qn

• Find nearest node qnear in Tstart
• Extend toward qrand by step size ϵ
• Validate new configuration is collision-free
• Add to tree if valid

3. Connect: Attempt to connect the new node to Tgoal
4. Swap: Alternate between growing Tstart and Tgoal

5. Terminate: When trees connect or iteration limit
reached
Collision Checking: A composite configuration is valid

if:
• Each qi ∈ Qi

free (no obstacle or self-collision)
• No inter-arm collisions between any pair (ai, aj)

Advantages:
• Probabilistically complete
• Can handle complex, non-convex configuration spaces
• No explicit coordination or conflict resolution needed

Limitations:
• Suffers from curse of dimensionality (composite space di-

mension = n× d)
• No optimality guarantees
• Poor performance in narrow passages or tightly con-

strained scenarios
• For 4 arms with 7 DOF each: 28-dimensional space is

very challenging

3. Implementation and Experimental Results
3.1. Experimental Design

We evaluate xECBS against ECBS, CBS, and RRT-Connect
on four multi-robot manipulation scenes of increasing com-
plexity (Fig. 1). Scene a (Random Configs) consists of 20
randomly sampled start/goal configurations for a set of ma-
nipulators; this scene probes average-case performance over
diverse queries. Scene b (4 arms) considers a more mod-
erate four-arm setup, while Scene c (4 arms criss cross)
places four arms in a crossing configuration that induces
substantial geometric coupling and potential narrow pas-
sages. Scene d (8 arms) uses a densely coupled arrange-
ment of eight arms operating in a shared workspace, rep-
resentative of a challenging high-dimensional coordination
problem.

For Scene a we report statistics over 20 independent tri-
als per planner. For Scenes b–d, we fix a representative



start/goal pair for the given scene and record whether each
planner is able to return a collision-free solution within the
5 minute time limit.

3.1.1 Collision Checking

Collision checking for both the low-level planners and the
conflict identification step in the CBS planner is carried out
using MuJoCo’s native collision detection pipeline. Mu-
JoCo first performs a broad-phase pass using axis-aligned
bounding boxes to efficiently identify pairs of geometries
that may be in contact. For each candidate pair, a narrow-
phase check is executed using analytical distance compu-
tations tailored to the underlying primitive types. The ma-
nipulators are modeled using a set of spheres, capsules, and
boxes that approximate the geometry of each link, allowing
MuJoCo to use closed-form formulas to compute contact
points, surface normals, and penetration depths. These con-
tact queries are used directly to evaluate whether proposed
motions violate collision constraints at both the single-arm
and multi-arm planning levels.

3.1.2 Planner Configuration

We configure the planners with the following parameters:
• xECBS/ECBS: Suboptimality bound w = 1.5
• RRT-Connect: Step size ϵ = 0.1 (in joint space), 10,000

maximum iterations

Table 1. Scene 1 – Random Configurations.

Planner Success Planning Time (s) Cost

xECBS 9/20 18.43± 15.48 2497± 404.51
ECBS 11/20 34.15± 36.34 2417.01± 405.61
CBS 8/20 21.02± 16.72 2402.87± 328.91
RRT-Connect 2/20 60.85± 34.59 N/A

Table 2. Scene b – 4 arms.

Planner Success Planning Time (s) Cost

xECBS Yes 12.935 1109
ECBS Yes 18.182 1091
CBS Yes 26.94 1109
RRT-Connect No N/A N/A

3.2. Evaluation Metrics

We use three quantitative metrics. Success measures
whether a collision-free joint-space trajectory is found
within a fixed time and memory budget. In Scene 1 this
is reported as the number of successful trials out of 20; in
Scenes 2–4, where we use a single representative query per

Table 3. Scene c – 4 arms criss cross.

Planner Success Planning Time (s) Cost

xECBS Yes 10.81 1288
ECBS Yes 21.94 1285
CBS No 21.67 1290
RRT-Connect No N/A N/A

Table 4. Scene d – 8 arms.

Planner Success Planning Time (s) Cost

xECBS Yes 136.81 2148
ECBS Yes 462.79 2176
CBS No N/A N/A
RRT-Connect No N/A N/A

scene, it is reported as a binary Yes/No outcome. Planning
Time is the wall-clock time in seconds required by each
planner, averaged over successful runs only; for Scene 1
we also report the standard deviation. Cost is the objective
value of the returned trajectory under the same cost func-
tion used by all search-based methods in this work (lower is
better). Costs are averaged over successful runs; we again
report standard deviation in Scene 1. For planners that never
succeed in a given scene the cost is recorded as N/A.

3.3. Quantitative Comparison

Across all scenes, xECBS consistently provides the best or
near-best runtime while maintaining competitive solution
quality. In the random configuration experiment (Table 1),
xECBS achieves the lowest mean planning time (18.43 s)—
roughly 1.1× faster than CBS and almost 2× faster than
ECBS—at the cost of a slight drop in success rate com-
pared to ECBS (9 vs. 11 successes out of 20). CBS achieves
the lowest average cost in this scene, but at higher run-
time and a similar success rate to xECBS. The sampling-
based RRT-Connect baseline is both substantially slower
and far less reliable (only 2/20 successes), highlighting the
difficulty of these high-dimensional multi-arm problems for
pure sampling-based planning.

In the more structured multi-arm scenes (Tables 4–3),
xECBS clearly dominates in planning time while preserving
or improving feasibility. In the 8-arm scene, both xECBS
and ECBS find solutions, but xECBS is more than three
times faster (136.81 s vs. 462.79 s) with a slightly lower tra-
jectory cost. In the 4-arm scenes, all search-based meth-
ods except RRT-Connect succeed in Scene b, and xECBS
again achieves the lowest runtime (12.935 s vs. 18.182 s for
ECBS and 26.94 s for CBS) with comparable costs. The
criss-cross configuration (Scene c) exacerbates coupling:
xECBS and ECBS succeed, but xECBS is about twice as



fast (10.81 s vs. 21.94 s), while differences in cost remain
marginal. CBS and RRT-Connect fail to reliably solve
this scene. Overall, these results indicate that leveraging
online-generated experience in xECBS significantly accel-
erates search-based planning for multi-robot manipulation
without degrading solution quality.

4. Conclusion
In this project, we implemented the xECBS planner from
Accelerating Search-Based Planning for Multi-Robot Ma-
nipulation by Leveraging Online-Generated Experiences
and evaluated it on four increasingly challenging multi-arm
manipulation scenes. Our experiments show that xECBS
consistently reduces planning time relative to ECBS and
CBS while preserving comparable or better solution cost,
and remains reliable in tightly coupled 8-arm and criss-
cross configurations where CBS frequently fails and RRT-
Connect is largely ineffective. These results validate the
central idea of the paper—that reusing online-generated ex-
perience can substantially accelerate search-based planning
for high-DOF multi-robot systems—within our own imple-
mentation and testbed. At the same time, the drop in success
rate on random configurations suggests room to further tune
heuristic inflation, experience selection, and re-planning
strategies. Overall, the project demonstrates both the prac-
tical benefits and the trade-offs of experience-augmented
search, and points toward future work on scaling such tech-
niques to more complex tasks and richer cost models.

References
[1] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Sub-

optimal variants of the conflict-based search algorithm for the
multi-agent pathfinding problem. In Proceedings of the Inter-
national Symposium on Combinatorial Search (SoCS), pages
19–27, 2014. 1, 3

[2] Dmitry Berenson, Pieter Abbeel, and Ken Goldberg. A robot
path planning framework that learns from experience. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pages 3671–3678. IEEE, 2012. 2

[3] James J. Kuffner and Steven M. LaValle. RRT-Connect: An
efficient approach to single-query path planning. In Proceed-
ings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 995–1001. IEEE, 2000. 1, 5

[4] Yorai Shaoul, Itamar Mishani, Maxim Likhachev, and
Jiaoyang Li. Accelerating search-based planning for multi-
robot manipulation by leveraging online-generated experi-
ences, 2024. 2, 4

[5] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturte-
vant. Conflict-based search for optimal multi-agent pathfind-
ing. Artificial Intelligence, 219:40–66, 2015. 1, 5


	. Introduction
	. Technical Approach
	. Problem Formulation
	Multi-Arm Path Planning Problem
	State Space Representation
	Action Space and Motion Primitives
	Constraints and Conflicts
	Cost Function

	. Enhanced Conflict-Based Search (ECBS)
	Two-Level Framework
	High-Level Search with Focal Search
	Algorithm Flow
	Low-Level Search: Weighted A*
	Suboptimality Bound

	. Experience-Accelerated ECBS (xECBS)
	Experience Database
	Experience-Accelerated Weighted A* (xWA*)
	xECBS Algorithm Flow
	Computational Benefit

	. Baseline Algorithms
	Conflict-Based Search (CBS)
	RRT-Connect


	. Implementation and Experimental Results
	. Experimental Design
	Collision Checking
	Planner Configuration

	. Evaluation Metrics
	. Quantitative Comparison

	. Conclusion

