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Abstract— Current Vision-Language-Action (VLA)
models primarily rely on 2D visual inputs, which fun-
damentally limits their ability to interpret depth, object
geometry, and occlusions essential for precise robotic
manipulation. While native 3D-aware models exist, they
often demand prohibitive computational resources and
massive 3D datasets. This work explores a lightweight
methodology to enhance existing 2D VLA architectures
with explicit 3D spatial awareness without requiring
specialized hardware. We investigate two “’software-only”
pipelines: (1) generating pseudo-3D point clouds from
single-view RGB images using Depth Anything v3 to
drive a 3D Diffusion Policy, and (2) injecting semantic
2D features from a DINOv2 backbone. Our experiments
demonstrate that inferred 3D cues can successfully guide
manipulation policies, achieving a 100% success rate on
planar tasks (Slide Plate) and 85% on dynamic tasks
(Basketball) at lower resolutions. However, we observe a
significant quality gap between real and predicted depth,
where artifacts in high-resolution inputs (512 x 512)
cause performance to degrade in geometrically complex
scenarios. These results highlight the potential of inferred
3D representations for scaling robot learning while iden-
tifying critical dependencies on the fidelity of monocular
depth estimation.

I. INTRODUCTION

The landscape of robot learning has been fun-
damentally reshaped by the emergence of Vision-
Language-Action (VLA) models. By leveraging
massive internet-scale datasets and large language
models, recent architectures such as OpenVLA [1],
GROOT [2], and 7y [3] have demonstrated a re-
markable ability to unify perception, reasoning,
and control within a single framework. These
models excel at interpreting natural language in-
structions and generalizing to unseen environ-
ments, largely due to the abundance of 2D image
and video data available for pretraining. However,
this reliance on 2D visual inputs introduces a
critical bottleneck: the world is inherently three-
dimensional.
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Current VLA models predominantly operate on
flat 2D projections, forcing them to implicitly infer
spatial relationships. This results in significant
limitations when interpreting depth, resolving ob-
ject geometry, or handling occlusions—capabilities
that are fundamental for precise robotic manipu-
lation. Conversely, “3D-native” policies, such as
PerAct [4] and 3D Diffusion Policy (DP3) [8],
explicitly process point clouds or voxel grids to
achieve superior precision in geometric tasks. Yet,
these approaches face a scalability barrier: high-
quality 3D data is scarce, expensive to collect, and
computationally intensive to process, rendering the
training of general-purpose “3D foundation mod-
els” currently impractical.

This work aims to bridge the gap between
the scalability of 2D VLAs and the precision of
3D policies. We propose a methodology to en-
hance 2D models with “software-defined” spatial
awareness, eliminating the need for specialized
depth hardware or massive 3D datasets. We inves-
tigate two primary mechanisms for this integra-
tion: (1) generating pseudo-3D point clouds from
single-view RGB images using monocular depth
estimators like Depth Anything v3 [9], and (2)
injecting spatially-aware semantic features from
DINOv2 [10] backbones directly into the pol-
icy. By systematically evaluating these “inferred
3D” representations against ground-truth 3D poli-
cies, we seek to answer a pivotal question: Can
lightweight, software-predicted 3D cues effectively
replace physical depth sensors to enable scalable,
geometrically-aware robot learning?

II. MOTIVATION

Vision-Language-Action (VLA) models have re-
cently gained significant attention for their abil-
ity to unify perception, reasoning, and control
within a single learning framework. Traditional



robotic systems relied on modular pipelines that
separated perception, planning, and actuation, each
demanding extensive manual engineering and task-
specific tuning. In contrast, VLAs leverage large-
scale pretraining on multimodal data such as im-
ages, text, and demonstrations to learn general-
izable mappings from language-conditioned vi-
sual inputs to robot actions. This paradigm shift
has enabled robots to execute diverse tasks from
natural-language prompts, adapt to new environ-
ments, and reuse visual and semantic represen-
tations learned from web-scale data. As a result,
VLAs are emerging as a promising foundation for
scalable, instruction-driven robotic intelligence.

Recent VLA architectures such as Pi_0, Groot,
and OpenVLA have demonstrated impressive ca-
pabilities in linking natural language instructions
to robotic actions. However, these models primar-
ily rely on two-dimensional visual representations
of scenes, which limits their spatial understand-
ing and geometric reasoning—both essential for
precise manipulation and planning in real-world
settings.

Humans naturally perceive the world in three
dimensions, allowing us to reason about depth, oc-
clusion, and object relationships. In contrast, VLAs
trained exclusively on two-dimensional projections
must infer 3D relationships implicitly. This often
leads to errors in tasks that require accurate spa-
tial awareness, such as grasping occluded objects
or estimating relative positions. While there are
ongoing efforts to develop full 3D VLA models,
the vast availability of 2D visual data across varied
conditions, captured through videos, images, and
simulators, makes it more practical to enhance
existing 2D VLAs by incorporating 3D cues rather
than replacing their visual encoders entirely.

This project aims to explore whether integrat-
ing explicit 3D scene information into pretrained
2D VLA architectures can improve their spatial
reasoning capabilities. Given the limited compu-
tational resources and the scarcity of large-scale
3D datasets for general-purpose training, our goal
is to inject 3D scene representations into the
VLA pipeline in a lightweight and complemen-
tary manner. Specifically, we aim to incorporate
geometric information without discarding the 2D
vision tokens, thereby enriching the model’s spatial

understanding while retaining its pretrained 2D
perceptual strengths.

ITII. LITERATURE REVIEW

2D Vision-Language-Action Models. Most ex-
isting VLAs operate purely on two-dimensional
visual inputs. They are trained on large-scale mul-
timodal datasets consisting of image—text—action
triplets collected from human demonstrations or
simulated rollouts. OpenVLA [1] demonstrated
that scaling both data and model size can pro-
duce strong zero-shot generalization across robotic
platforms, learning directly from diverse manipu-
lation episodes paired with natural language in-
structions. NVIDIA’s GROOT-N1 [2] extended this
idea to humanoid control by pairing a multi-
modal transformer for perception and reasoning
with a diffusion-based motion generator, allowing
the robot to execute semantically grounded motor
commands from textual prompts. Similarly, the
mo and o5 families [3] leverage pretrained vi-
sion-language encoders such as CLIP or Sigl.IP
and co-train them on large collections of robot
demonstrations. These 2D VLAs have shown re-
markable versatility in mapping high-level instruc-
tions to low-level actions. However, because they
rely solely on RGB images, their spatial under-
standing is fundamentally limited, making it diffi-
cult to reason about occlusions, depth, or the ge-
ometric relationships between objects in cluttered
scenes.

3D-Aware Policies for Manipulation. A com-
plementary research direction focuses on explicitly
encoding 3D structure for policy learning. Per-
Act [4] introduced a transformer-based architecture
that processes voxelized RGB-D observations to
predict discrete 6-DoF actions, demonstrating that
grounding control in 3D voxel space improves pre-
cision for fine-grained tasks. 3D Diffusion Policy
(DP3) [5] and its successors extend this idea by
conditioning action diffusion models directly on
point clouds, achieving strong spatial reasoning
and robustness to camera viewpoint changes. Man-
iCM [6] further improves geometric consistency by
learning 3D scene flow alongside policy updates,
showing that spatially aware features lead to more
stable manipulation behavior. Although these mod-
els outperform 2D VLAs on spatially demanding



tasks, their reliance on large RGB-D datasets and
heavy compute requirements make them difficult
to scale to the same level as language-grounded
VLA frameworks.

Injecting 3D Information into Pretrained 2D
VLAs. A more recent line of work aims to bridge
the gap between scalable 2D VLAs and geometry-
aware 3D policies by incorporating 3D features
into existing pretrained models without retrain-
ing them from scratch. PointVLA [7] introduces
a lightweight point cloud encoder that extracts
geometric features and fuses them with 2D vi-
sion tokens through cross-attention. This hybrid
design enriches the model’s spatial understanding
while preserving the generalization capabilities
and large-scale priors of the 2D backbone. Other
concurrent efforts explore similar multi-view or
depth-aware token fusion strategies to enhance ob-
ject localization and affordance reasoning. These
approaches motivate our work, which similarly
investigates how explicit 3D scene representations
can be integrated into pretrained 2D VLA architec-
tures to improve spatial reasoning under realistic
compute and data constraints.

IV. METHODOLOGY

To evaluate the feasibility of replacing hardware
sensors with software-inferred geometry, we de-
signed a comparative study using the 3D Diffusion
Policy (DP3) as our primary baseline. Our method-
ology investigates two distinct strategies: (1) gen-
erating explicit “pseudo-3D” representations via
monocular depth estimation, and (2) leveraging
implicit 3D-aware features through large-scale pre-
trained vision transformers.

A. Simulation Environment and Tasks

All experiments were conducted within the
MetaWorld benchmark [11], a multi-task robotics
simulation platform based on the MuJoCo physics
engine. MetaWorld provides a diverse suite of 50
manipulation tasks, ranging from simple object in-
teraction (e.g., button pressing) to complex dexter-
ous manipulation (e.g., bin picking and assembly).

Training a single generalist policy across all 50
tasks is computationally prohibitive and difficult
to stabilize. Therefore, to ensure a tractable yet
rigorous evaluation, we selected a representative
subset of 8 tasks that demand varying degrees

of spatial precision, including Box Close, Button
Press, Door Lock, and Bin Picking.

B. Baseline: Vanilla 3D Diffusion Policy

Our baseline architecture is the standard imple-
mentation of the 3D Diffusion Policy (DP3) [8].
The vanilla pipeline relies on a stereo camera setup
to capture ground-truth depth information.

1) Input Processing: The system -captures
RGB-D data, which is converted into a 3D
point cloud. Crucially, this baseline relies
on ground-truth semantic segmentation to
isolate the object of interest from the back-
ground.

2) Encoding: The segmented point cloud is
downsampled to a low resolution of N =
512 points. These points are processed by
a PointNet encoder, which aggregates the
geometric data into a 64-dimensional latent
vector.

3) Policy: This geometric embedding, concate-
nated with the robot’s proprioceptive obser-
vations, serves as the conditioning input for
the diffusion-based action head.

Figure 1 illustrates this standard architecture.
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Fig. 1: The Vanilla DP3 Architecture. It utilizes
stereo cameras and ground-truth segmentation to
feed a 512-point point cloud into a PointNet en-
coder.

C. Pipeline 1: Pseudo-Depth with Depth Anything
v3

The first proposed pipeline aims to remove
the dependency on stereo cameras and ground-
truth segmentation while maintaining an explicit
3D representation. We replace the hardware depth
sensor with a “software sensor” pipeline utilizing
Depth Anything v3 [9].

In this approach (Figure 2):



o We capture only single-view RGB images
from the environment.

e The Depth Anything v3 model infers a high-
fidelity dense depth map from the RGB input.

o This depth map is unprojected to create
an “augmented” 3D point cloud. Unlike the
vanilla baseline, this method does not require
semantic segmentation masks, as the depth
estimator provides global scene context.

A key advantage of this generative approach is
the flexibility of resolution. Since the point clouds
are computationally generated, we are not bound
by sensor sparsity. We evaluate this pipeline at
both the baseline resolution (N = 512) and a
high-resolution setting (N = 4096) to investigate
whether denser geometric cues improve manipula-
tion precision.
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Fig. 2: Pipeline 1: Pseudo-3D Generation. We
extract depth maps using Depth Anything v3 and
reproject them into augmented point clouds (up
to 4096 points), bypassing the need for stereo
cameras.

D. Pipeline 2: Implicit 3D with DINOv2

The second pipeline challenges the necessity
of calculating explicit geometric representations
(such as point clouds) entirely. Instead, we hy-
pothesize that modern Vision Transformers (ViTs)
possess sufficient internal understanding of geom-
etry and depth to guide manipulation tasks directly
from 2D data.

In this configuration (Figure 3), we replace the
explicit PointNet encoder with a DINOv2 back-
bone [10].

o The model receives 2D RGB inputs directly.
o The DINOv2 encoder, pretrained on massive
datasets using self-supervision, encodes both

semantic and implicit geometric information
into the latent dimension vector.

« This vector allows the policy to “infer” depth
and spatial relationships without explicit co-
ordinate inputs.

While newer architectures such as VGGT or
DINOV3 theoretically offer superior 3D-aware fea-
tures, we utilized DINOv2 (specifically the ViT-
S/14 variant) due to compatibility constraints with
the existing codebase. This pipeline represents a
move toward fully 2D-native policies that retain
3D reasoning capabilities.

=)
Diffusion o/
Policy 15 H
[\ [T}

Block
Action

DINO v2

Model

2D RGB
‘ Input >
RGB Camera

2D Feature

Encoder (Replacmg Pointnet
Encoder)

Fig. 3: Pipeline 2: Implicit Encoding. We replace
the geometric PointNet encoder with a pretrained
DINOv2 Vision Transformer, allowing the model
to infer spatial information directly from 2D to-
kens.

V. RESULTS

We evaluated our proposed pipelines against the
vanilla DP3 baseline across a subset of MetaWorld
tasks. Our analysis focuses on success rates, train-
ing efficiency, and the qualitative fidelity of the
inferred 3D representations.

A. Baseline Performance

The wvanilla 3D Diffusion Policy, utilizing
ground-truth stereo depth and segmentation,
achieved a 100% success rate across all tested
tasks at low resolution (128 x 128). When scaled
to high resolution (512 x 512), the baseline also
achieved 100% accuracy. Notably, while the high-
resolution baseline required more computational
power per step, it converged to optimal perfor-
mance with significantly fewer training iterations
compared to the low-resolution variant.

B. Pipeline 1: Pseudo-Depth with Depth Anything
v3

The performance of the “software-only” depth
pipeline was highly task-dependent, revealing a



critical limitation in temporal consistency. Quan-
titative results are presented in Table I.

Planar Manipulation Success: For tasks where
the manipulator and object remain primarily on the
table surface, such as Plate Slide Side, the pipeline
performed exceptionally well. We achieved a
100.0% success rate at high resolution and 90.0%
at low resolution. In these planar scenarios, the
relative scale of objects is preserved effectively
by the depth estimator. As shown in Figure 4, the
high-resolution pseudo-depth maps and generated
point clouds (b) closely resemble the ground truth
(a). Furthermore, Figure ?? demonstrates that the
depth estimation remains consistent across differ-
ent timeframes for these tasks, allowing the policy
to track the object effectively.

Non-Planar Failure Modes: In contrast, tasks
requiring the manipulator to leave the table surface
or perform complex 3D reorientations (e.g., As-
sembly, Pick-Place, Basketball) resulted in a 0.0%
success rate. Qualitative analysis revealed that
Depth Anything v3 struggles to maintain temporal
consistency when the camera perspective or object
occlusion changes significantly. As illustrated in
Figure 6, while the ground truth (a) captures the
geometry clearly, the pseudo-depth (b) fluctuates
inconsistently across frames. Without the aid of
explicit segmentation, this noise propagates into
the point cloud, causing the policy to lose track of
the end-effector’s spatial relationship to the target.

Despite these failures, the training throughput
was efficient. Because Depth Anything runs infer-
ence rapidly, the training time for this pipeline was
comparable to the low-resolution baseline, even
when processing high-resolution inputs.

TABLE I: Depth Anything v3 Pipeline Results
(Pseudo-3D)

Task Res Size Points  Success (%)
Plate Slide Side High 512 x 512 4096 100.0
Plate Slide Side Low 128 x 128 512 90.0
Assembly High 512 x 512 4096 0.0
Assembly Low 128 x 128 512 0.0
Pick-Place Wall High 512 x 512 4096 0.0
Basketball Low 128 x 128 512 0.0

C. Pipeline 2: Implicit 3D with DINOv2

The DINOV?2 feature injection pipeline demon-
strated strong potential for implicit geometric rea-

soning, particularly at lower resolutions. Results
are detailed in Table II.

Sample Efficiency vs. Compute: A major find-
ing was the sample efficiency of the Vision Trans-
former backbone. Pipeline 2 was able to match
the accuracy of the vanilla baseline on successful
tasks (e.g., Hammer, Basketball) with approxi-
mately half the training iterations. However,
the wall-clock training time was higher than the
baseline due to the computational weight of the
ViT architecture and the large size of the extracted
feature vectors (384-dim).

Resolution Sensitivity: Interestingly, this
pipeline performed significantly better at lower
resolutions. The model achieved an 85.0%
success rate on Hammer and 80.0% on
Basketball at 128 x 128 resolution. However,
scaling to high resolution (512 x 512) caused
performance to drop (e.g., Basketball dropped to
50.0%, Hammer to 0.0%). This suggests that the
DINOvV2 features used (ViT-S/14) may optimize
for semantic understanding over the fine-grained
high-frequency spatial details required for high-res
manipulation.

TABLE II: DINOv2 Pipeline Results (Implicit 3D
Features)

Task Res Size Success (%)
Hammer Low 128 x 128 85.0
Basketball Low 128 x 128 80.0
Basketball High 512 x 512 50.0
Sweep Into  Low 128 x 128 50.0
Dial Turn Low 128 x 128 15.0
Shelf Place Low 128 x 128 5.0

VI. CONCLUSION

This work systematically explored the feasi-
bility of replacing hardware depth sensors with
’software-only” inferred geometry for robotic ma-
nipulation. Our results highlight a distinct trade-
off between geometric explicitness and semantic
understanding.

The Depth Anything v3 pipeline proved that
single-view RGB can successfully emulate depth
sensors for planar tasks, achieving 100% success
rates when the workspace is constrained to a table
surface. However, the lack of temporal consistency
in the predicted depth maps caused catastrophic
failure in dynamic 3D tasks where the manipulator
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Fig. 4: High-Resolution Planar Task (Plate Slide). (a) The Ground Truth geometry. (b) The inferred depth

and point cloud from Depth Anything v3. (c) A subsequent timeframe showing that depth estimation
remains temporally consistent for planar actions.
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Fig. 5: Low-Resolution Planar Task (Plate Slide). Despite the reduction to 512 points, the inferred
geometry (b) retains the structural properties of the ground truth (a), allowing for a 90% success rate.

breaks contact with the surface. Without ground- policy to control.
truth segmentation or stable depth propagation, the

Conversely, the DINOv2 pipeline demonstrated
generated point clouds became too noisy for the y PP

that explicit 3D coordinates are not always neces-
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Fig. 6: Failure Case: Assembly Task. While ground truth (a) is stable, the inferred depth maps (b) show
significant inconsistency and artifacts as the manipulator moves compared with the GT, causing policy

failure (0% success).
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Fig. 7: Qualitatlve Analysis of Pipeline 2 (DI-
NOv2). This frame visualizes the internal fea-
tures extracted by the backbone. Left: The input
RGB observation. Middle: The implicit depth map
inferred from the attention features. Right: The
PCA-based segmentation mask, demonstrating that
DINOV2 naturally separates objects from the back-
ground without explicit supervision.

sary. By leveraging the implicit spatial awareness
of large-scale Vision Transformers, we achieved
high success rates (up to 85%) with signifi-
cantly improved sample efficiency—reaching con-
vergence in half the iterations of the baseline.
However, this approach is computationally heavier

and currently struggles to exploit high-resolution
inputs effectively.

Ultimately, while inferred 3D representations
show promise for scaling robot learning on
internet-scale 2D data, our results indicate they
currently lack the precision and temporal con-
sistency of physical sensors for complex, fine-
grained manipulation. To bridge this gap, future
work should prioritize multi-view reconstruction
techniques and temporally-consistent depth esti-
mators, such as UniK3D, which can effectively
propagate geometric cues across frames. Addition-
ally, adopting more advanced 3D-aware backbones
like VGGT or DINOv3—specifically trained to
predict geometric information—could significantly
enhance the model’s ability to infer robust spatial
structures directly from 2D inputs.
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