
Multi-Agent Geometric Inspection and Classification (MAGIC)

Team H

System Development Review

The Team

Megan Lee

Emma Hon

Kartik Agrawal

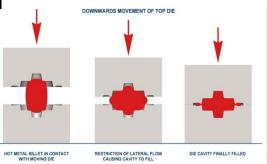
Kailash Jagadeesh

Shreya Ragi

Jiaoyang Li

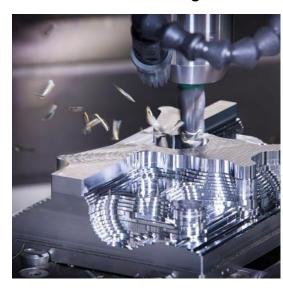
Phillip Huang

Yorai Shaoul

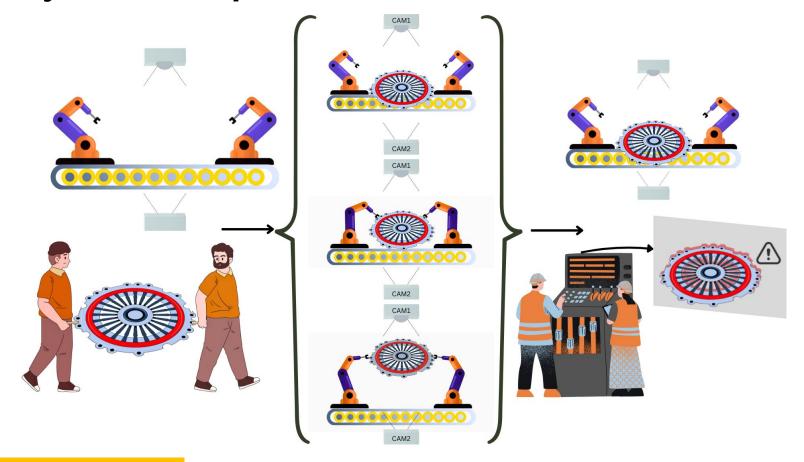

01 Project Recap

Casting

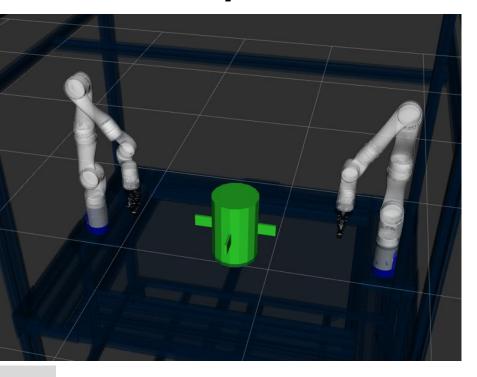
Manufacturing Process

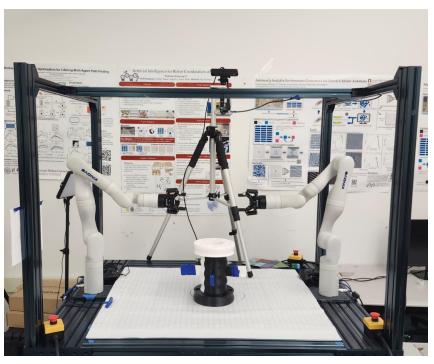

Forging

WAAM



CNC Finishing




Our Use Case

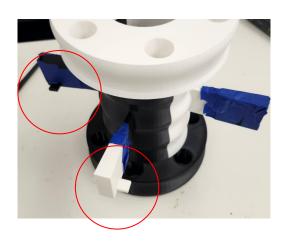
Project Description

Overall System

Functional Requirements (No Changes)

Functional Requirement	Performance Requirements
M.F.1 Sense and estimate part pose	M.P.1 Detect given grasp points with 90% of the time
M.F.2 Plan arm trajectory and move to desired point	M.P.2.1 Plan movement inside valid zones 100% of the time M.P.2.2 Plan desired paths for both arms within 4.4 ∓ 3.4 seconds
M.F.3 Pick Up and Manipulate Part	M.P.3.1 Pick up and manipulate the part successfully 4 out of 5 times
M.F.4 Perform 3D Reconstruction	M.P.4.1 3 cm precision M.P.4.2 Construct within 10 minutes
M.F.5 Compare to ground truth and calculate differences in surface contours	M.P.5.1 Robust to outliers 95% of the time
M.F.6 Avoid causing surface damage to samples	M.P.6 No surface change to part after manipulation 80% of the time

02 Current System Status


Perception Subsystem

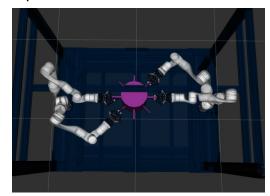
Function Description & Current Functionality

➤ Pose Estimation

Environment Data

- Uses Overhead Intel Realsense camera
- Has uniquely designed handles

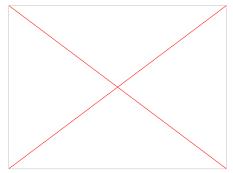
Pose Estimation


- Learning based one shot detector gives yaw based on handles
- Circle Centroid give x, y position

Go To Pose + Pick Up

Moveit plans path to x, y, yaw goal pose

CHALLENGES


- Cannot obtain yaw for a symmetric object
- Pose can be estimated anywhere in the environment but arms cannot plan to reach

Function Description & Current Functionality

➤ 3D Reconstruction

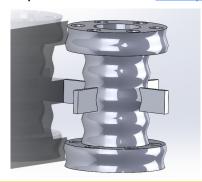
Manipulation Data

- Object motion recorded using ZED camera
- Transforms obtained for the center point between both grippers using IK

| | jarvis@pop-os:-/codebase/capstone/magic/ros2_ws 101x32 | jarvis@pop-os:-/codebase/capstone/magic/ros2_ws 501x32 | jarvis@pop-os:-/codebase/capstone/magic/ros2_ws 502x02 | jarvis@pop-os:-/codebase/capstone/magic/ros2_ws

Reconstruction

- SAM 2 segmentation
- Reconstruction using depth data and transforms



Ground Truth Comparison

Explore CAD to Point Cloud comparison methods. <u>Example</u>

CHALLENGES

- Inaccurate transforms from Aruco pose estimation (OpenCV)
- Low precision depth data

Analysis and Tests

Test		Validation	Status	Notes	
Test 1	Camera Calibration Verification	Low reprojection and disparity errors		Purchased new camera, factory calibration is reliable	
Test 4	Object Pose Estimation	Translation error less than 5 cm and rotation error less than 5 degrees	Using classical CV for position and learning for orientation		
Test 5	Extrinsic Calibration	Translation error less than 1 cm and rotation error less than 1 degrees	Pass	Between camera and world	
Test 6	Transformation Verification	Position error less than 1 cm and orientation error less than 1 degrees	Relative transformation during motion		
Test 8	3D reconstruction accuracy			Surface completeness still needs to be worked on	
Test 9	Manipulation Camera Sync	Faster transform publish rate than camera frame rate	WIP	Transforms are published at 20 Hz and Camera fps is 15.	

Manipulation Subsystem

Last Semester

- KDL Kinematic Solver per arm → combine joint targets
- OMPL RRT* Planner
- JointTrajectoryController
- Bounding boxes constraining workspace

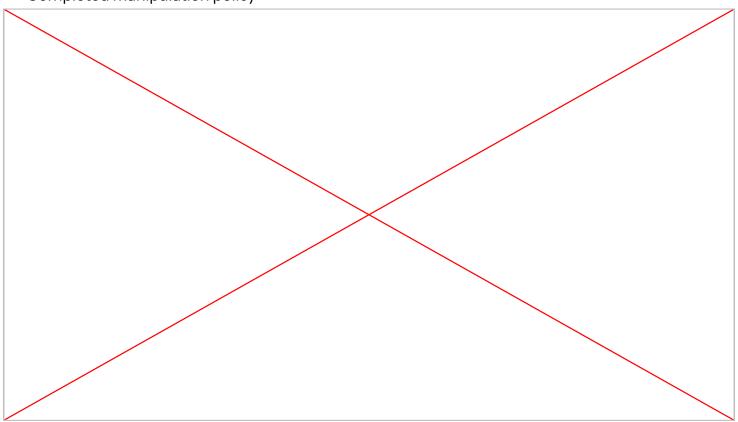
Challenges

- → Frequent replanning needed due to randomized search methods
- → Failed IK due to workspace constraints and combined joint targets

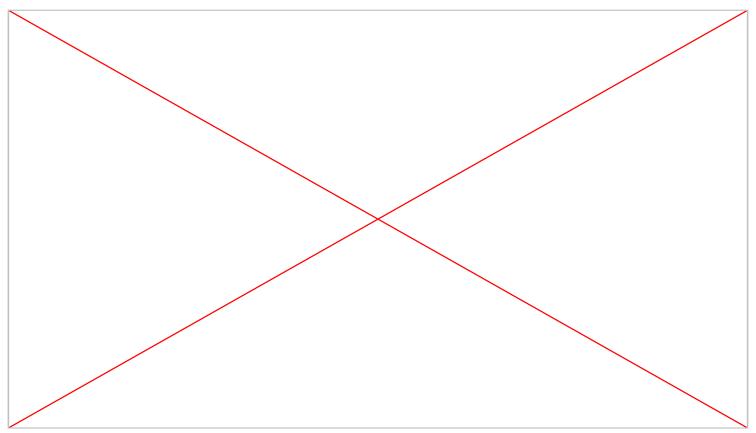
Function Description

Now..

- Removed bounding boxes
- Cartesian Based Planning with waypoints every 1cm
- Each arm gets trajectory, interpolated with same start and end time for synchronicity with collision checking
- FCL (Flexible Collision Library)


Improvements

- → Better arm synchronization and coordination
- → Robust planning (no random based search)
- → No more replanning
- → Flexible to object position and angle



Current Functionality

Completed manipulation policy

- Deployed on arms with new test object
- Integration with pose estimation in the x and y position
 - o In the process of integrating angle approach

Analysis and Tests

Test		Validation	Status	Notes
Test 2	3D-Printed Object Grasp Test	plan and execute to grasp points with an 80%+ success	Pass	Able to grasp new test object
Test 3	Joint Constraint Motion for 360 Rotation	 Orientation axis error ≤ 0.5° throughout spin EE positional drift ≤ 10 mm Locked joint deviation ≤ 0.2° 	Pass	Able to lock joints to do 360 rotation on the end effectors
Test 7	Full Manipulation Policy Robustness	execute full FSM with an 80% or higher success rate.	Pass	90% success rate with 20 runs
Test 10	Integration of Pose Estimation with Manipulation	 ≤10 ms latency between systems grasp within 2 cm translation and 2° rotation error of the pose estimation 	WIP	Latency check passed, 2cm and 2 degree error in progress

Remaining Challenges

- Integration with Manipulation motion policy revisions
- Recording accurate transforms
- Time synchronization between camera frames and transformations interpolations
 may cause inaccuracies
- Inaccurate stereo depth due to lack of features impacts reconstruction accuracy
- Exploring the limitations of object configurations that arms can reach
- Dual arm coordination has slight timing issues

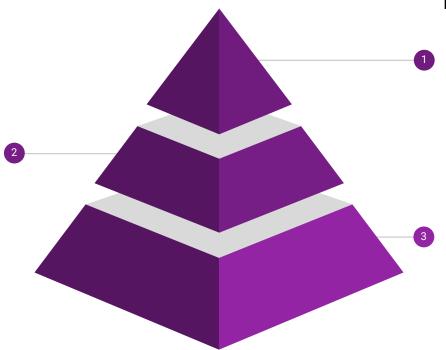
03

Project Management

Schedule Status

Are we on schedule

Short Answer: YES


- Subsystems modules finished.
- Initial Integration finished.

- Actively identifying and improving gaps in sub-modules
- Fine-tuning requirements and outputs of each subsystems.

Fall Semester Test Plan

Manipulation

- Optimize 3D printed object grasp strategies for consistency and success rate.
- Test constraint handling and robustness of the manipulation policy under varied conditions.

Perception

- Verify camera pre-calibration, extrinsic calibration, and transformation accuracy.
- Evaluate object 4D pose estimation and 3D reconstruction performance.
- Validate camera synchronization and perception data reliability

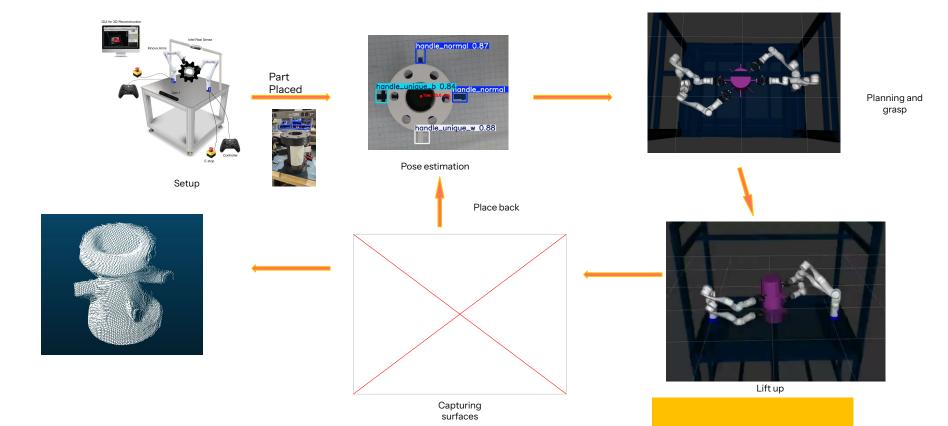
Integration

- Test integration of pose estimation with manipulation to ensure accurate spatial alignment.
- Verify transformation consistency between robot arms and 3D reconstruction outputs.
- Confirm synchronization across perception and manipulation systems during operation.
- Conduct the Fall Validation Demonstration to validate full system functionality and robustness.

Progress Reviews - capability milestones

- 1. Finish Integration of 3D reconstruction with transforms from the arms.
- 2. Start Full Integration, to identify gaps and bugs.

- Complete full perception-manipulation system integration
- 2. Perform comprehensive testing and validation across all modules


FALL Validation Demonstration and Encore

Location: Wean Hall 1302 (ARCS lab)

Equipment:

- Two Kinova arms
- desktop workstation
- 3D printed objects (regular + stretch goal)
- ZED 2 Stereo Camera
- Realsense Overhead Camera

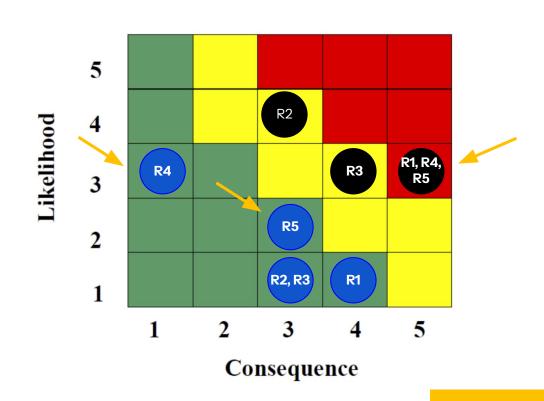
Sequence of Events

Performance Metrics

Metric	Target	Pass Criteria	
Grasp Accuracy	±2 cm, ±2 deg	All grasp points reached within tolerance	
Planning Time	4 ± 3 sec	Stable and repeatable trajectory generation	
3D Reconstruction Precision	≤ 3 cm	Reconstruction completed within 10 min	
Repeatability	≥ 3 successful runs	No unexpected errors or delays	
Object Integrity	No damage	Safe and stable manipulation	

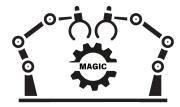
Budget

Out of \$5000, used


24.34%

Item	\$
Test Object	150
Experiment (e.g. turntable)	93
Monitor	320
Lab setup (e.g. light)	85
Camera	569
Total	1217

Risk Management


ID	Risk	Туре	Likelihood	Consequence	Mitigation
		Technical,			
	Robot arms collide with undefined	Programmatic,			During testing, someone is always on the manual
R1	environment	Cost	2	5	e-stop.
	Falling behind schedule because of				
R2	learning curve	Schedule	4	3	Seek mentorship early
					Schedule lab time efficiently
					Set up SSH/TeamViewer
					Fall back on simulation if it can't be done on real
					hardware.
R3	Resource availability	Schedule	2	4	Use Kinova robot in the Al maker space as a backup.
					Keep backup items readily available and ensure
R4	End effector/Test object breaks	Technical, Cost	3	5	quick-change mechanisms for rapid replacement.
					Perform unit tests and subsystem validation
	Integration issues between			_	experiments continuously.
R5	subsystem	Schedule	3	5	Integrate one subsystem at a time.

Risk Likelihood-Consequence Table

Thank You!!

Questions?

